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Abstract
Equations of motion are derived for a fractional dimensional system of n-spatial
coordinates to be used as an effective description of anisotropic and confined
systems. An existing measure theoretic approach is extended to multiple
variables and different degrees of confinement in orthogonal directions and
comparisons are made with the analytic continuation of Gaussian integrals.
This is applied to the variational principle, and equations of motion for a field
described by a Lagrange density are found. A specific example is looked at in
Schrödinger wave mechanics, particularly in three-coordinate systems.

PACS numbers: 02.30.Cj, 02.30.Xx, 03.50.−z, 03.65.Ge, 71.35.−y, 71.35.Cc,
73.21.−b

1. Introduction

Fractional dimensional space has successfully been used as an effective physical description
of confinement in low-dimensional systems. First applied by He [1–3], this approach replaces
the real confining structure with an effective space, where the measure of its anisotropy or
confinement is given by the non-integer dimension.

There are many approaches in use to describe fractional dimensions. These include
fractal geometry [4], fractional calculus (a generalization of integration and differentiation to
fractional order) [5] and the analytic continuation of the dimension in Gaussian integrals [6–
10]. The latter is often used in quantum field theory as a regularization parameter in Feynmann
diagrams [9, 10], and has also been used for investigations into Fermi and Luttinger liquids
[11, 12].

Many of the investigations into low-dimensional semiconductor structures have used a
mathematical basis introduced by Stillinger [6] in which he described integration on a space
of D dimensions and provided a generalization of the Laplace operator on this space. Recent
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progress includes the description of a single-coordinate momentum operator in this fractional
dimensional space based on generalized Wigner commutation relations [13, 14] presenting a
possible realization of parastatistics [15].

The formalism from [6] has been applied to problems such as excitons [3, 16–22],
magnetoexciton [23], impurities [24], polarons [25] and superconductivity [26], often
successfully mirroring computational results in specific cases. Nevertheless, all of these
applications have been based on either one- or two-coordinate Laplacian and not three-
coordinate Laplacian due to the increasing complexity of Stillinger’s method as the number of
variables increases. This is a problem in that the applications should intrinsically be in three
coordinates and the number of coordinates has a great effect on the solution of equations like
in the wave equation [27]. For example, it was noted in [16] that in the exciton problem only
the two-coordinate model is really good for the description of s-states because it is highly
symmetric. For a full description of the p-states or higher orbital angular momentum a full
three-variable problem is desirable.

A question which the formalism of Stillinger brings up is how does the dimension
arrange itself to act on the coordinates. With two orthogonal coordinates it fixes itself to
a single variable only while leaving the other free. We believe that this is generally the
case for n orthogonal coordinates as well. With this in mind is it possible to distribute
the dimension D between the coordinates by attaching different dimensions to individual
orthogonal coordinates? Physically this seems to be a useful idea to describe confinement
in low-dimensional systems which can have different degrees of confinement in different
orthogonal directions. So for example it may be more useful for a description of dots which
are not in general spherical. If we have a system which is 1.6 dimensional, then different
descriptions of this could be in two coordinates as 1 + 0.6 dimensional and in three coordinates
as 1 + 0.2 + 0.4 dimensional, if the dimension adds linearly.

This paper develops a formalism in n spatial coordinates to address these questions. In
the following section we briefly summarize the commonly used approach first proposed by
Stillinger [6]. Several key results are identified which are often referred to throughout the paper.
In section 3 we look at a different formalism in measure theory which allows us to construct
the same single-variable integration as in Stillinger’s method [6]. We use this in section 3.2 as
a basis to develop a multiple-variable approach where each orthogonal coordinate has its own
dimension. We then show that this not only includes Stillinger’s integration method within
it, but is also a significant generalization and appears more accessible. In section 4 we use
a variational method to derive the equations of motion in a non-integer-dimensional space,
including Stillinger’s non-integer-dimensional Laplacian, in n coordinates. The approach can
be used to find the equation of motion for any system if we have an appropriate Lagrangian
density. Section 5 applies the approach to the Schrödinger equation, and also presents full
analytic solutions for a three-variable system. Comparisons with the equations derived here
and Stillinger’s approach are made before finally concluding.

2. Stillinger’s framework for integration on non-integer-dimensional spaces

To begin, we re-examine the main points of Stillinger’s formalism [6] for integrating on a
D-dimensional space. We consider n points xi in a topological space with distances between
points given by a metric rij = r(xi , xj ). Integration is then defined by the variation of a
point x0 over all spaces where the volume element is the intersection of all the D-dimensional
spherical shells drawn between x0 and xi for all i = 1, . . . , n. The volume element is written
as Wn(x1 · · · xn|r01 · · · r0n) and is a function of the 1

2n(n + 1) distances {rij : 0 � i < j � n}.
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Integration on a D-dimensional space is then defined as∫
dx0h(r01 · · · r0n) :=

∫ ∞

0
dr01 · · ·

∫ ∞

0
dr0nWn(x1 · · · xn|r01 · · · r0n)h(r01 · · · r0n)

= f ({rij : 1 � i < j � n}). (2.1)

To find the weights the integration is chosen to satisfy the following integral equation, where
the dimension explicitly enters the formalism,

∫
dx0 exp


−

n∑
j=1

βj r
2
0j


 =

(π

τ

)D/2
exp


− 1

τ

n∑
j<k=1

βjβkr
2
jk


 (2.2)

and the {βj : 1 � j � n} with real-valued constants and τ = ∑n
j=1 βj . From a repeated

application of equation (2.2), Stillinger showed that the weights satisfy the following relation:∫ ∞

0
drnWn(x1 · · · xn|r01 · · · r0n) = Wn−1(x1 · · · xn−1|r01 · · · r0(n−1)). (2.3)

While integration over a single variable was shown to be∫
dx0 f (r(x0, x1)) =

∫ ∞

0
dr W1(r)f (r) (2.4)

with the weight given by

W1(r) = σ(D)rD−1 (2.5)

where

σ(D) = 2πD/2

�(D/2)
. (2.6)

From this Stillinger went on to derive a single-variable Laplacian in D dimensions,

∇2ψ(r) = ψ ′′(r) +
D − 1

r
ψ ′(r). (2.7)

In the case of two points, x1 and x2, integration can be written as∫
dx0 f (r01, r02) =

∫
dp

∫
dl J (p, l)W2(p, l)f (p, l)

=
∫

dp

∫
dl σ (D − 1)lD−2f (p, l) (2.8)

which is expressed in terms of two variables p and l, which represent the line between (x0, x1)

and (x1, x2) and its orthogonal complement respectively. The Jacobian, J (p, l), accounts for
the change of variable in equation (2.1) to the orthogonal pair. The two-variable integration
weight led Stillinger to obtain an expression for a two-coordinate Laplacian as

∇2ψ(p, l) =
[

∂2

∂p2
+

∂2

∂l2
+

D − 2

l

∂

∂l

]
ψ(p, l). (2.9)

We see that the new term introduced for the fractional dimensional space acts only on the
l component. Equation (2.9) has often provided the starting point for many of the subsequent
investigations [3, 16–23], although it has often been stated that a three-variable form would be
useful. In principle it is possible to use Stillinger’s approach to do this but it appears awkward
to manipulate and check results, due to the size of the expression of the integration weight W3.
This makes it difficult to progress in this method, hence in the following sections we develop
and extend the method using a different approach.
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3. Measure theory

A different approach, developed by Svozil [7] within the framework of measure theory [28],
can be taken to arrive at the single-variable integration in equation (2.4). The attraction of
this approach is the rich mathematical background of the subject. The first part of this section
considers the development of the single-variable approach [7], which, in the second part,
is then used to construct a multiple-variable approach through the introduction of product
measures.

We begin by considering a measure space [28] (X,M,µ, d) which consists of a set X,
and a collection of Borel subsets M and a metric d. µ measures X, if and only if µ : M →
R ∩ {t : 0 � t � ∞} where R = R + {−∞} + {∞} and when B ⊂ M and B is a countable
sequence of sets

µ(∪B) �
∑
B

µ(B)

with equality if B are disjoint Borel sets.
We take the measure µ as the Hausdorff measure, over a set E ⊂ M ,

µH(E,D) = lim
δ→0

inf

{ ∞∑
i=1

α(Ei,D)[d(Ei)]
D : E ⊂

⋃
i

Ei, d(Ei) < δ,∀ i

}
(3.1)

with D a positive real number and α(Ei,D) is a geometrical factor. The Hausdorff dimension
is then given by

D = dimH(E) = inf{s : µH(E) = 0} = sup{s : µH(E) = ∞}.
When D is an integer n, the Hausdorff measure becomes the n-dimensional Lebesgue measure
and the counting measure when n is zero [4, 28]. Measures other than the Hausdorff measure
could of course be considered and several are discussed in [28].

3.1. Single-variable integration

Following Svozil [7] we take X ⊂ R
n with n being a positive integer and elements

x, y, z, . . . ∈ X are denoted by n-tuples of real numbers x = (x1, x2, . . . , xn). Further
conditions imposed on X are that it is closed, unbounded and regular so that D is the same or
unique over all X with respect to the measure. Integration over a continuous function f (x) may
then be defined as the limit of an infinitesimal covering diameter where {Ei} is a disjointed
covering and xi ∈ Ei giving∫

X

F(x) dµH(x) := lim
d(Ei)→0

∑
Ei

f (xi)α(Ei,D)[d(Ei)]
D. (3.2)

For a spherically symmetric system we parametrize X by polar coordinates with r = d(x, 0)

and angles 
. Er,
 can be thought of as a spherically symmetric covering around a centre at
the origin. If our function f (x) is symmetric with respect to some centre x0 ∈ X, i.e. f (x) is
a constant ∀ x : d(x, x0) = r , then we can transform our space to shift the centre of symmetry
to the origin. With this parametrization

dµH(r,
) = lim
d(Er,
)→0

α(Er,
,D)[d(Er,
)]D = d
D−1r
D−1 dr. (3.3)

where d
d−1 is defined by its integral being the volume of a D-dimensional sphere of unit
radius. Explicitly,∫

d
d−1 = 2πd/2

�(d/2)
. (3.4)
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Therefore for symmetric f (x) we obtain for the D-dimensional integral∫
X

f (r) dµH =
∫ ∞

0
f (r) d
D−1r

D−1 dr

= σ(D)

∫ ∞

0
f (r)rD−1 dr (3.5)

which is the same integral as Stillinger’s in equation (2.4).

3.2. Multi-variable integration

A shortfall of the integral in equation (3.5) is that it is only over a single variable, and not
multiple variables as in equation (2.1), and is only useful for integrating spherically symmetric
functions. For example only the single-coordinate Laplacian can be constructed from
equation (3.5). In what follows we will extend the measure theory method to multiple
variables by considering product spaces and product measures.

We begin with a collection of n measure spaces (Xm,Mm,µm, d) equipped with a metric
d and m, a positive integer, labels a specific measure space. We take X ⊂ R

1 with elements
of X denoted by 1-tuples of real numbers x = (xm). We then form a Cartesian product of all
the sets Xn producing the space X1 × X2 × · · · × Xn.

The definition of product measures and application of Fubini’s theorem (appendix A)
provides us with a measure of the product space X1 × X2 × · · · × Xn as

(µ1 × · · · × µn)(X1 × · · · × Xn) = µ1(X1) · · · µn(Xn). (3.6)

We note that we are using a product measure here which does not in general need to be a
Hausdorff measure [29]. Integration over a function f on the product space can be written as∫

f (x1, . . . , xn) d(µ1 × · · · × µn) =
∫

· · ·
∫

f (x1, . . . , xn) dµ1(x
1) · · · dµn(x

n). (3.7)

In this form, the single-variable measure from equation (3.5) may now be used for each
coordinate, which in turn has an associated dimension αn,

dµn(x
n) = W1(x

n, αn) dxn

= σ(αn)(x
n)αn−1 dxn (3.8)

and the total dimension of the product space is set as D := ∑
i αi .

As a first example of the approach, we consider a two-variable problem specified by the
product space X1 × X2 with measures α1 and α2. Setting α1 = 1 so that α2 = D − 1, we find
integration in this space as∫

dµ(x1) dµ(x2)f (x1, x2) =
∫

dx1 dx2σ(D − 1)(x2)D−2f (x1, x2) (3.9)

which is essentially the same as Stillinger’s two-variable integration expression in equation
(2.8), and in turn leads to the two-variable Laplacian in equation (2.9). In essence we have
formed a product space comprising X2 with a Hausdorff measure of dimension D − 1 and
X1 with the Lebesgue measure. The construction is reflected in the form of the Laplacian,
equation (2.9), with one coordinate unchanged from the usual Laplacian while the other has
an additional first-order derivative term.

For our second example we look to reproduce the result for the single-variable integration,
equation (3.5), from the product space X1 × X2 × · · · × Xn. This result is used later to show
that Stillinger’s approach [6] is contained in the product space method. We take a spherically
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symmetric function f (x1, . . . , xn) → f (r) where r2 = (x1)2 + · · · + (xn)2 and perform the
integration in spherical coordinates (r, θ1, . . . , θn−1). Equation (3.7) becomes∫

dµ1(x
1) · · · dµn(x

n)f (r) = σ(α1) · · · σ(αn)

∫
dr

∫
dθ1 · · ·

∫
dθn−1Jnr

α1+···+αn−n

× (cos θ1)
α1−1(sin θ1)

α2+···+αn−(n−1)(cos θ2)
α2−1

× (sin θ2)
α3+···+αn−(n−2) · · · (sin θn−1)

αn−1f (r) (3.10)

where Jn is the Jacobian of the coordinate change given by [10]

Jn = rn−1(sin θ1)
n−2(sin θ2)

n−3 · · · (sin θn−2) × 1.

Since the function being integrated is only dependent on the radial variable and not the angular
variables we can integrate these using the standard integral [30]∫ π/2

0
sinµ−1 x cosν−1 x dx = 1

2

�(µ/2)�(ν/2)

�
(

µ+ν

2

)
providing Re(µ), Re(ν) > 0. With D = ∑n

i=1 αi we obtain∫
dµ1(x

1) · · · dµn(x
n)f (r) = σ(D)

∫
f (r)rD−1 dr (3.11)

which describes integration over a spherically symmetric function in a D-dimensional space
and reproduces the earlier result in equation (3.5).

The relationship established in equation (3.11) can be used to show that Stillinger’s
approach is contained in the product space method. In Stillinger’s formulation the integration
weights in equation (2.1) are defined as functions over the 1

2n(n + 1) distances rij whereas
the weights are a function of n variables. This can be seen by considering the relation
between weights of equation (2.3). For example we can write W1 in terms of Wn as

W1(x1|r01) =
∫ ∞

0
· · ·

∫ ∞

0
dr0n · · · dr02Wn(x1 · · · xn|r01 · · · r0n) (3.12)

where W1 is a function of one variable. In the n − 1 integrals above we are essentially
integrating out a variable in each of these, leaving us with a function of a single variable. It
follows that the Wn must be functions of n variables and not 1

2n(n+1) variables. In this respect
[6] appears to be using a coordinate system which introduces extra variables which are not
necessary.

A connection between the two approaches is evident when calculating the volume of a
D-dimensional ball. We begin with the characteristic function over which the integration takes
place, χ(r, R), defined by

χ(r, R) =
{

1 if 0 � r � R

0 if r > R.

With the help of equation (3.12) the volume of a D-dimensional ball, from Stillinger’s approach,
can be written as

VD(R) =
∫ ∞

0
W1(x1|r01)χ(r01, R)

=
∫ ∞

0
dr0n · · ·

∫ ∞

0
dr01Wn(x1 · · · xn|r01 · · · r0n)χ(r01, R)

=
∫

dx1 · · ·
∫

dxnJ ′
nW

′
n(x

1 · · · xn)χ(r01 = g1(x
1, . . . , xn), R) (3.13)
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where for the final step we have performed some coordinate transformation r0n =
gn(x

1, . . . , xn) with J ′
n being the Jacobian of this transformation.

We can write a similar expression for the volume of a D-dimensional ball from the point
of view of Hausdorff measures in a product space. Since χ(r, R) is a function of a single
variable we interpret it as a radial function and, following equation (3.11), integrate over a
product space

VD(R) =
∫

dµ1(x
1) . . . dµn(x

n)χ(r, R). (3.14)

Both equations (3.13) and (3.14) are calculating the same quantity by integrating over the same
function. If we were to choose the coordinate transformation in equation (3.13) so that it is in
spherical or Cartesian form we could equate the integration weights with the measures above.
In general some care must be exercised since the weights (Wn) in equation (3.13) depend only
on one free parameter whereas for the measures in equation (3.14) we have n free parameters.
For integrating over a spherically symmetric function this does not matter, as we have seen
above, but otherwise it is important. To equate the weights leaving one free parameter in
dµ1(x

1) · · · dµn(x
n) we may choose either α1 = α2 = · · · = αn−1 = 1 and the free parameter

αn = D − (n − 1) or α1 = α2 = · · · = αn = D/n. It is not clear in general which case
should be used although we expect the former because this is what occurred for integration
over two variables in equation (2.8). In addition, for the latter case the system is isotropic and
can therefore be rejected for a description of anisotropy. Extending this to n variables leaves
one of the sets in the product space with the Hausdorff dimension of D − (n − 1) with the
remaining characterized by Lebesgue measures. In this case the integrand term in the last line
of equation (3.13) can be written for an orthogonal system as

J ′
n(x

1 · · · xn)W ′
n(x

1 · · · xn) → W1(x
n,D − (n − 1))

so that integration in this space is expressed as∫
dµ(x1) · · · dµ(xn)f (x1 · · · xn) =

∫
dx1 · · · dxnσ (D − (n − 1))(xn)D−nf (x1 · · · xn).

(3.15)

This result not only reproduces the earlier results taken from Stillinger’s method, i.e.
equations (2.4) and (2.8) when n = 1 and n = 2 respectively, it also extends and generalizes
the method in a straightforward manner to n variables. On this later point, we could assign a
dimension to each coordinate rather than a single parameter to the whole system. The product
space method can therefore be used to address a question brought up in the introduction.
When specifying a problem we choose the number of orthogonal coordinates (usually 3) and
the dimension associated with the coordinate to represent the degree of confinement in that
direction. The total dimension of the system is simply the sum of the individual dimensions.

4. Euler–Lagrange equations in non-integer dimensions

In this section we use the variational principle to derive Euler–Lagrange equations for fields
in non-integer dimensions. In the first instance this provides an alternative derivation of
Stillinger’s Laplacians, although the scope of the approach is far wider. Given an appropriate
Lagrange density for a system we wish to describe, this method provides a straightforward
approach to obtaining the dynamics of the fields (the equation of motions) for any number
of degrees of freedom, and significantly, in any coordinate basis. Our approach closely
follows the standard method for obtaining the Euler–Lagrange equations [10, 31, 32] arriving
at a general system described by a Lagrangian density in n coordinates. We note that recent
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independent work briefly considered a one-coordinate system describing shallow donor s-states
[24]. Equations of motion have also been considered in the context of fractional calculus [5, 33]
where the derivatives in the Euler–Lagrange equations are replaced by fractional derivatives.

The action principle for a functional L (the Lagrangian), dependent on the field φ(x) and
its spatial and time derivatives ∂µφ(x), is given by the integral

S =
∫ b

a

dt L(φ(x), ∂µφ(x))

with integration between initial and final times a and b. The action can be written in terms of
a Lagrange density L = ∫

∂

dDxL(φ(x), ∂µφ(x)), where D is the dimension of space and ∂


is the boundary. In terms of the Lagrangian density we have

S =
∫

∂
′
dD+1xL

where ∂
′ is the boundary for all coordinates. To find the equation of motion of a field we look
to minimize the action, i.e. δS = 0. We consider small variations from the exact solution φ0(x)

and ∂µφ0(x) as φ(x) = φ0(x) + δφ(x) and ∂µφ(x) = ∂µφ0(x) + δ(∂µφ(x)) with δφ(x)

φ(x)

 1.

The variation does not occur at the end points or boundaries and gives conditions on the fields
such that δφ(x)|∂
 = 0 and δ(∂µφ(x))|∂
 = 0.

By taking variations and minimizing the action, the usual Euler–Lagrange equations are
obtained [10, 31, 32],

∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)
= 0. (4.1)

The extension to non-integer-dimensional space proceeds in a similar manner, but now
with each orthogonal spatial coordinate having its own separate measure as in equation (3.8).
In what follows we keep time in integer dimensions and concentrate on non-integer spatial
dimensions. The action principle for n degrees of freedom is

S =
∫

dt dDxL(φ, ∂µφ) =
∫

dt

∫
dµ1(x

1) · · · dµn(x
n)L(φ, ∂µφ) (4.2)

where φ and ∂µφ are functions of (t, x1, . . . , xn) and ∂µ = (∂/∂t, ∂/∂xi) with i running from
1 to n. Using the measure in equation (3.8) the integration range extends from zero to infinity.
The variation of the action with respect to the fields can be written as

δS =
∫

dt

∫
dµ1(x

1) · · · dµn(x
n)

[
∂L(φ, ∂µφ)

∂φ
δφ +

∂L(φ, ∂µφ)

∂(∂µφ)
δ(∂µφ)

]

=
∫

dt

∫
dx1 · · · dxn

n∏
j=1

W1(x
j , αj )

[
∂L(φ, ∂µφ)

∂φ
δφ +

∂L(φ, ∂µφ)

∂(∂µφ)
δ(∂µφ)

]
(4.3)

where in the last step we have used equation (3.8) for the measures. After integrating the
second term in equation (4.3) by parts the total variation becomes

δS =
∫

dt

∫
dx1 · · · dxn δφ

[
n∏

j=1

W1(x
j , αj )

∂L(φ, ∂µφ)

∂φ

−
n∏

j=1

W1(x
j , αj )∂µ

∂L(φ, ∂µφ)

∂(∂µφ)
− ∂L(φ, ∂µφ)

∂(∂µφ)
∂µ

n∏
j=1

W1(x
j , αj )

]
. (4.4)

For the extremum in the variation we set δS = 0; it follows that as this is true for any δφ

we arrive at
n∏

j=1

W1(x
j , αj )

∂L(φ, ∂µφ)

∂φ
− ∂µ

[
n∏

j=1

W1(x
j , αj )

∂L(φ, ∂µφ)

∂(∂µφ)

]
= 0. (4.5)
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Equation (4.5) is the Euler–Lagrange equation in non-integer dimensions prescribed by
measures which take the general form given in equation (3.8). The introduction and influence of
the measure distribution will be examined shortly. It is however worth noting that equation (4.5)
is generally valid for other types of measures. A straightforward example would be any
measures which can be written as dµ(xj ) = W(xj ) dxj ; for this situation all instances of W1

in equation (4.5) would be replaced with W . A more natural requirement of equation (4.5) is
that the standard Euler–Lagrange equations should be readily obtained for integer dimensions.
This is indeed the case, since for D = n and α1 = 1, . . . , αn = 1, the measures in equation (4.5)
become

∏n
j=1 W1(x

j , αj ) = 1 in Cartesian coordinates from which ∂µ

∏n
j=1 W1(x

j , αj ) = 0
and the standard Euler–Lagrange equations (4.1) are recovered.

Apart from a simple scaling, the introduction of non-integer dimensions results in an
additional term not present for integer dimensions, i.e. the third term in the integrand of (4.4).
In this form, the extra term comprises a ‘flow’ or ‘current’ of the measure ∂µ

∏n
j=1 W1(x

j , αj )

multiplied by ∂L(φ,∂µφ)

∂(∂µφ)
, the canonical momentum density of the field L in integer dimensions.

We see that in general the dynamics of the field described by L is altered by the dimension.
Indeed the use of describing anisotropy by altering the space is often referred to as ‘dynamic
space’ [3].

This role can be further appreciated by writing equation (4.5) in Cartesian form. An
intermediate step requires the evaluation of the second term in (4.5) using the explicit form of
the measures given by (3.8). In this case we find

∂µ

n∏
j=1

W1(x
j , αj ) = ∂µ

n∏
j=1

σ(αj )(x
j )αj −1

= (αµ − 1)(xµ)−1
n∏

j=1

W1(x
j , αj )

where αµ are the diagonal elements of a matrix which includes both time and spatial
dimensions, i.e.

α = diag(1, α1, . . . , αn).

Here the total dimension of the system Dt (including time) is given by Dt = Tr(α) and the
spatial dimension D of the system is specified by

D = Tr(α) − 1 (4.6)

recalling that for the present work we are keeping time in integer dimensions. With these
introductions, the Cartesian form of the Euler–Lagrange equations in non-integer dimensions
is written as

∂L(φ, ∂µφ)

∂φ
− ∂µ

∂L(φ, ∂µφ)

∂(∂µφ)
− (αµν − δµν)(x

(−1))ν
∂L(φ, ∂µφ)

∂(∂µφ)
= 0 (4.7)

with δµν a diagonal unit matrix and we have introduced a vector where the components xi are
inverted, i.e. x(−1) = column(t−1, (x1)−1, . . . , (xn)−1). Comparing this with equation (4.1)
we see this produces an extra term not present in integer dimensions.

Before we proceed it is worth commenting on alternative ways the equations of motion
in non-integer dimensions could be obtained. One approach would be to use individual
momentum operators in [13–15] for orthogonal coordinates with a different parameter for each
coordinate. The product Hausdorff measure space could then be used to identify the dimension
on the momentum operators as in [13] providing another multiple-variable approach to the
equations of motion.
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An attraction of developing the equations using variational principles is that conserved
quantities may be easily identified and offer further insight into the role of the measure
distribution. The general approach is usually known as Noethers theorem [10, 32] and, before
a specific example is examined in the following section, we investigate the conserved quantities
arising from our general (non-integer dimension) equations given by (4.5). Formally we begin
in much the same way, but instead of small functional variations from exact solutions, we
consider symmetry transformations of the system φ(x) → φ(x) + δφ(x) which will leave the
action invariant. The resulting variation of action takes the same form as equation (4.3) which
can now be reworked using the Euler–Lagrange equations for non-integer dimensions in (4.5).
We arrive at

δS =
∫

dt

∫
dx1 · · · dxn ∂µ


 n∏

j=1

W1(x
j , αj )

∂L(φ, ∂µφ)

∂(∂µφ)
δφ


 . (4.8)

Under a continuous symmetry transformation the action is invariant and we have

∂µ


 n∏

j=1

W1(x
j , αj )

∂L(φ, ∂µφ)

∂(∂µφ)
δφ


 = 0

a result which describes a conservation law for an associated conserved current density, i.e.

∂µJµ = 0. (4.9)

where

Jµ =
n∏

j=1

W1(x
j , αj )

∂L(φ, ∂µφ)

∂(∂µφ)
δφ.

In the conventional approach (i.e. integer dimensional) the resulting current is often referred
to as a Noether current [10, 32]. In this respect equation (4.9) describes a Noether current
in non-integer dimensions where, as with earlier observations, the measure distribution of the
space is clearly seen to influence the dynamic quantities. We note the integer dimension result
is recovered as

∏n
j=1 W1(x

j , αj ) = 1.
Finally it is worth noting that the form of the key equations presented above, i.e. (4.5)

and (4.9), could just have easily been obtained from the standard integer results using the
substituion, L → ∏n

j=1 W1(x
j , αj )L or Jµ → ∏n

j=1 W1(x
j , αj )J

µ. This useful observation
allows a straightforward reworking of standard expressions from integer to non-integer
dimensions. For example, the energy–momentum tensor [10] for looking at spacetime
translations xµ → xµ + aµ in non-integer dimensions would become

T µ
ν =

n∏
j=1

W(xj , αj )

[
∂L

∂(∂µφ)
∂νφ − Lδµ

ν

]
(4.10)

with an associated conservation law given by ∂µT µ
ν = 0.

5. Example: Schrödinger equation in non-integer dimensions

To obtain the equations of motion all that is required is a Lagrangian density suitable for
the problem at hand and application of equation (4.5). In principle we could choose any
well-known example (see e.g. [31]). In this section we specifically consider Schrödinger
wave mechanics to continue the connection with previous work [6]. However here we can
take the advantage of our method to derive both the form and solutions for problems in three
coordinates.
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The Lagrangian density used in Schrödinger wave mechanics for a single particle in
potential V is given as [31]

L = ih̄ψ †ψ̇ − h̄2

2m
∇ψ †∇ψ − V (x1, . . . , xn)ψ †ψ. (5.1)

Using equation (4.5) and performing variations with respect to ψ † and ∂µψ † we obtain
for the Schrödinger equation

ih̄ψ̇ = − h̄2

2m
∇2ψ − h̄2

2m
(αij − δij )(x

−1)j ∂jψ + V (x1, . . . , xn)ψ (5.2)

where i, j run over 1, . . . , n, for the n-coordinate system. Written explicitly in Cartesian form
for two-spatial coordinate the equation becomes

ih̄
∂ψ

∂t
= − h̄2

2m

(
∂2

∂x2
+

α1 − 1

x

∂

∂x
+

∂2

∂y2
+

α2 − 1

y

∂

∂y

)
ψ + V (x, y)ψ. (5.3)

In this general form the Laplacian term is notably different from Stillinger’s two-coordinate
Laplacian in equation (2.9). Equation (5.3) uses two parameters (α1 and α2) to describe the
measure distribution of space with each one is acting independently on a coordinate and the
total spatial dimension of the system is D = α1 + α2. Following the discussion in the later
part of section 3.2 the connection with Stillinger’s result is obtained once we set α1 = 1, the
total spatial dimensionality becomes D = α2 + 1 and we obtain

ih̄
∂ψ

∂t
= − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

D − 2

y

∂

∂y

)
ψ + V (x, y)ψ. (5.4)

The Laplacian term agrees with Stillinger’s result, i.e. equation (6.20) in [6].
Satisfied that our approach is reproducing existing work, we now turn to a problem which,

to our knowledge, has not been considered, namely a three-variable Schrödinger equation in
non-integer dimensions. As noted in the introduction solutions to such a problem would be
useful, for example in exciton problems it would allow the examination of higher orbital states,
exploiting the full range of the three principle quantum numbers in non-integer dimensions.
For three spatial coordinates, equation (5.2) becomes

ih̄
∂ψ

∂t
= − h̄2

2m

(
∂2

∂x2
+

α1 − 1

x

∂

∂x
+

∂2

∂y2
+

α2 − 1

y

∂

∂y
+

∂2

∂z2
+

α3 − 1

z

∂

∂z

)
ψ + V (x, y, z)ψ.

(5.5)

Again, following the discussion in the later part of section 3.2, we choose a single parameter
for the non-integer dimension, α3 i.e. α1 = α2 = 1 so D = α3 + 2. In this case we obtain

ih̄
∂ψ

∂t
= − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

D − 3

z

∂

∂z

)
ψ + V (x, y, z)ψ. (5.6)

For most applications it is likely that a spherical coordinate system (r, θ, φ) will be used and
in this system (5.6) becomes

ih̄
∂ψ

∂t
= − h̄2

2m

(
∂2

∂r2
+

D − 1

r

∂

∂r

)
ψ − h̄2

2m

1

r2

(
∂2

∂θ2
+

D − 2

tan θ

∂

∂θ

)
ψ

− h̄2

2m

1

r2 sin2 θ

(
∂2

∂φ2
+

D − 3

tan φ

∂

∂φ

)
ψ + V ψ. (5.7)

Note that instead of directly transforming (5.6) the above result can be more easily obtained
using the orthonormal basis ∂µ = [

∂
∂r

, 1
r

∂
∂θ

, 1
r sin θ

∂
∂φ

]
with equations (4.5) and (5.1).
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For a spherically symmetric time-independent potential, V (t, r, θ, φ) → V (r),
equation (5.7) is separable and the wavefunction is written as

ψ(r, θ, φ, t) → R(r)X(θ)F (φ) exp(−iEt/h̄) (5.8)

resulting in a separable set of equations(
1

rD−1

d

dr
rD−1 d

dr

)
R(r) + 2[E − V ]R(r) +

k1

r2
R(r) = 0 (5.9)

(
1

sinD−2 θ

d

dθ
sinD−2 θ

d

dθ

)
X(θ) − k1X(θ) − k2

sin2 θ
X(θ) = 0 (5.10)

(
1

sinD−3 φ

d

dφ
sinD−3 φ

d

dφ

)
F(φ) + k2F(φ) = 0 (5.11)

where k1 and k2 are separation constants. Detailed solutions for angular-dependent equations
are described in appendix B. We find the appropriate solution to (5.11) is

FD
m (φ) = T (D−4)/2

m (cos φ) (5.12)

where T
β
m (x) is a Gegenbauer polynomial [31] (see also appendix B (equation (B.3)) for the

definition of T
β
m (x)). The separation constant takes the value

k2 = m(m + D − 3) m = 0, 1, 2, . . . . (5.13)

The solution to equation (5.9) is found to be

XD
l,m(cos θ) = (1 − (cos θ)2)m/2T

(D−3)/2+m

l−m (cos θ) (5.14)

with the separation constant

k1 = −l(l + D − 2) l = 0, 1, 2, . . . where m � l. (5.15)

The orthogonality relation for the wavefunctions can be found from the orthogonality
of the Gegenbauer polynomials described in equation (B.14). So when x = cos φ, z =
cos θ, β = D−4

2 and λ = D−3
2 we have∫ 1

−1

∫ 1

−1
(1 − x2)β(1 − z2)λFD

m (x)FD
n (x)XD

l,m(z)XD
p,n(z) dx dz

= δm,n δl,p

2�(n + 2β + 1)2�(p + 2λ + m + 1)

(2n + 2β + 1)�(n + 1)(2p + 2λ + 1)�(p − m + 1)
(5.16)

which is consistent with the D-dimensional integration weight. (See for example the angular
integration weight of equation (3.10) when n = 3, α1 = α2 = 1 and α3 = D − 2.)

The radial equation has the same form as Stillinger’s, equation (7.7) in [6] which has
been solved for a free particle, harmonic oscillator and Coulomb potential in [3, 6]. These
solutions are, for a free particle,

R(r) = (kr)1−(D/2)J(D/2)+l−1(kr) k = (2E)1/2 (5.17)

where J(D/2)+l−1(kr) is a Bessel function. For a harmonic oscillator V (r) = 1
2Kr2 the solution

is

R(r) = exp
(−1

2 s2
)
slL(D/2)+l−1

n (s2)
(5.18)

s = K1/4r n = 0, 1, 2, . . .

with energy eigenvalues

En = 2K1/2(n + l/2 + D/4). (5.19)
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For the Coulomb potential V (r) = −Z/r , solutions are written in terms of the confluent
hypergeometric function M(a, b, z) where

R(r) = rl exp(−κr)M

(
l +

D − 1

2
− (Z/κ), 2l + d − 1, 2κr

)
(5.20)

E = −1

2
κ2.

This is square integrable for only discrete values of κ [3, 6] giving the energy spectrum as

En = −Z2

2
(
n + D−3

2

)2 (5.21)

where n = 1, 2, . . . and l = 0, 1, . . . , n − 1.
The solution in equation (5.20) and energy spectrum in (5.21) are those used previously

to describe excitons in non-integer-dimensional space [3, 16, 20, 22]. Thus irrespective
of whether a two- or three-coordinate description is used, the form of the energy spectrum
remains the same. The key difference is for the solutions found above we have three quantum
numbers (n, l, m), which are clearly more suitable for describing physical problems set in
three coordinates. Stillinger’s solutions are formulated on a plane and consequently only
provide two quantum numbers (n, l). Thus, while the energy spectrum remains the same,
the orbital degeneracy between the two cases will in general be different except for situations
when m = 0.

Comparing the three-coordinate solutions for integer- and non-integer dimensions we note
the orbital degeneracy of the m quantum number is reduced, since we are no longer allowed
any negative values of m. Degeneracy, however, is retained in the case of the l quantum
number. It is noteworthy that similar observations occur for the two-variable case although
now it is the l quantum number that is the subject of the reduced degeneracy.

The radial equation is the same as that in Stillinger’s so the energy spectrum remains
unchanged. If the potential V was angular dependent then we would see an effect of the
angular variables in the spectrum. For example, were fine structure effects to be considered,
such as spin–orbit coupling, then the angular properties would start to play a part in the splitting
of the energy levels.

A more general observation about the solutions in three coordinates is that the square of
the total angular momentum, i.e. k1, takes non-integer values if the dimension is non-integer.
This is similar to the quantum mechanics of two non-interacting anyons [34] in which the
square of the angular momentum l2 is replaced by (l − α)2 where α is the anyon parameter
occurring from the statistical interaction (see [34] for details). An important difference is that
anyons are for two-dimensional systems (two coordinates) whereas in the present case we
have similarities with three coordinates and D dimensions.

Finally we consider conserved quantities offered by the action principle in Schrödinger
wave mechanics with an explicit example, being a phase transformation with a constant phase
of the field [32]

φ(x) → φ′(x) = e−iaφ(x) � φ(x) − iaφ(x)
(5.22)

φ†(x) → φ′†(x) = eiaφ†(x) � φ†(x) + iaφ†(x).

Following the general result obtained earlier, equation (4.9), for the fields φ and φ† a
conserved current is given by

Jµ =
n∏

j=1

W(xj , αj )

[
∂L

∂(∂µφ)

∂δφ

∂a
+

∂L
∂(∂µφ†)

∂δφ†

∂a

]
(5.23)
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which satisfies the conservation law of the form of equation (4.9). Using the Lagrangian
density in equation (5.1) we find for µ = 0

J 0 = h̄

n∏
j=1

W(xj , αj )φ
†(x)φ(x) = h̄ρ(x) (5.24)

whereas for µ = i = 1, 2, . . . , n

J i = h̄2

2mi

n∏
j=1

W(xj , αj ) [φ†(x)∂iφ(x) − (∂iφ
†(x))φ(x)] = h̄j i(x). (5.25)

The quantities ρ(x) and j i(x) are the local probability and current density obeying
the continuity equation (4.9) and reduce to the well-known forms in integer dimensions
[10, 31, 32]. We see that the effect of the non-integer dimensions is to modify the probability
and current density so that it takes into account the measure distribution of the space. The
measure then appears in the continuity equation above because it is crucial in keeping the
properties of non-integer-dimensional space in this equation.

6. Conclusion

We have extended the measure theoretic approach of Svozil [7] to a multiple-variable space
where each orthogonal coordinate has its own dimension. This extension is a significant
generalization of the existing multiple-variable approaches allowing for the description of
different degrees of confinement in different directions. The method has been applied with
the variational principle to obtain the Euler–Lagrange equations in non-integer dimensions,
clearly identifying terms which are not present in integer dimensions. The overall approach
allows for a much simpler derivation of the non-integer-dimensional Laplacians but also may be
applied to any system in any number of coordinates provided we have an appropriate Lagrange
density. As an example of the approach, we solved the time-independent Schrödinger equation
in three coordinates under numerous potentials. We observed that there was a reduction in
the degeneracy of the energy levels and that the square of the angular momentum takes on
non-integer values depending on the dimension.
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Appendix A. Product measures

Here we look briefly at some of the main theorems involved in forming the Cartesian product
of two measure spaces. A full description of this is given in [28] containing proofs for the
theorems below.

When α measures X and β measures Y , we define the function

α × β : 2X×Y → R ∩ {t : t � 0}
so that, for any S ⊂ X × Y, (α × β)S is the infimum of the numbers

∞∑
j=1

α(Aj ) · β(Bj )
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corresponding to all sequences of α measurable sets Aj and β measurable sets Bj with

S ⊂
∞⋃

j=1

Aj × Bj .

α × β measures X × Y , and

(α × β)(A × B) � α(A) · β(B)

whenever A is α measurable and B is β measurable. α × β is the largest measure satisfying
this inequality and is called the Cartesian product of α and β.

The following theorems we look at are part of Fubini’s theorem. Suppose α measures X
and β measures Y. Now, if A is an α measurable set and B is a β measurable set, then A × B

is an α × β measurable set and

(α × β)(A × B) = α(A) · β(B). (A.1)

If f is an α × β integrable and countably α × β measurable function (in particular, if f is
A × β summable), then∫

f d(α × β) =
∫∫

f (x, y) dα(x) dβ(y) =
∫∫

f (x, y) dβ(y) dα(x). (A.2)

These results can then easily be extended to products of n spaces.

Appendix B. Solution to angular equations

Here we find the appropriate solutions to equations (5.10) and (5.11). The solutions of which
are true for any radial potential. Starting with (5.11) we make the substitution x = cos φ to
obtain (

(1 − x2)
d2

dx2
− (D − 2) x

d

dx
+ k2

)
F(x) = 0. (B.1)

If we write β = D−4
2 and set k2 = m(m + 2β + 1) where m is a real number, then we obtain a

form of the Gegenbauer equation [31]

(1 − x2)F ′′ − 2(β + 1)xF ′ + m(m + 2β + 1) = 0. (B.2)

The solution of which is a Gegenbauer polynomial T
β
m (x) [31]. If m is zero or a positive

integer then the solution is analytic at x = ±1 and the polynomial is finite [31]. Then we can
write the solution to this equation as [31]

T β
m (x) = (−1)m�(m + 2β + 1)

2m+βm!�(m + β + 1)
(1 − x2)−β dm

dxm
(1 − x2)m+β. (B.3)

Note that the Gegenbauer polynomial here is slightly different to that in [6, 3] by a multiplicative
factor. So the appropriate solution to equation (5.11) is

FD
m (φ) = T (D−4)/2

m (cos φ) (B.4)

where m = 0, 1, 2, . . . with separation constant

k2 = m(m + D − 3). (B.5)

We now solve equation (5.10). With k2 found as above and setting λ = 2β+1
2 = D−3

2 and
with x = cos θ again, equation (5.10) becomes

(1 − x2)X′′ − 2(λ + 1)xX′ − k1X − m(m + 2λ)

(1 − x2)
X = 0. (B.6)
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Considering the case where m = 0 and setting k1 = −l(l + 2λ + 1) we have

(1 − x2)X′′ − 2(λ + 1)xX′ + l(l + 2λ + 1)X = 0 (B.7)

which is of the form of the Gegenbauer equation [31] the solution of which is the Gegenbauer
polynomial T λ

l (x) defined as above. For an appropriate solution l = 0, 1, 2, . . . so that
T λ

l (x) is analytic at x = ±1 and is also a finite polynomial. For m = 0 the solution is
XD

l (θ) = T
(D−3)/2
l (cos θ) and the separation constant is

k1 = −l(l + 2λ + 1) = −l(l + D − 2) (B.8)

where l = 0, 1, 2, . . . .
For m �= 0, equation (B.6) becomes

(1 − x2)X′′ − 2(λ + 1)xX′ + l(l + 2λ + 1)X − m(m + 2λ)

(1 − x2)
X = 0. (B.9)

We try the following form for the solution of this equation:

X(x) = (1 − x2)m/2u(x). (B.10)

Substituting for this gives the following differential equation in u(x):

(1 − x2)u′′ − 2(λ + m + 1)xu′ + [l(l + 2λ + 1) − m(m + 2λ + 1)]u = 0. (B.11)

If we differentiate (B.7) m times we get equation (B.11) where U = dm

dxm T λ
l (x). So the solution

of (B.9) is XD
l,m(x) = (1 − x2)m/2 dm

dxm T λ
l (x). Because T is a polynomial of order l then we

have the condition m � l like in the hydrogen atom, otherwise the wavefunction is zero.
The full solution of equation (5.10) is therefore with x = cos θ

XD
lm(x) = (1 − x2)m/2 dm

dxm
T

(D−3)/2
l (x). (B.12)

We note the following relation [31]:

d

dx
T β

n (x) = T
β+1
n−1

so we can write the solution as

XD
l,m(cos θ) = (1 − (cos θ)2)m/2T

(D−3)/2+m

l−m (cos θ) (B.13)

for m = 0, 1, 2, . . . , l = 0, 1, 2, . . . and m � l.
Orthogonality of the Gegenbauer polynomials is found via the following integral [31]:∫ 1

−1
(1 − x2)βT β

m (x)T β
n (x) dx = δm,n

2�(n + 2β + 1)

(2n + 2β + 1)�(n + 1)
. (B.14)
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